References

ALLWOOD, B. L., SHAHRIARI-ZAVAREH, H., STODDART, J. F. & WILLIAMS, D. J. (1984). J. Chem. Soc. Chem. Commun. pp. 1461-1464.

DUNITZ, J. D. & SEILER, P. (1974). Acta Cryst. B30, 2739–2741.

- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KRUSE, L. I. & CHA, J. K. (1982). J. Chem. Soc. Chem. Commun. pp. 1329–1331.
- MAKRIYANNIS, A. & FESIK, S. (1982). J. Am. Chem. Soc. 104, 6462–6463.
- MERSH, J. D., SAUNDERS, J. K. M. & MATLIN, S. A. (1983). J. Chem. Soc. Chem. Commun. pp. 306–307.

PEARS, D. A. (1985). PhD Thesis. Univ. of Sheffield, England.

- PEARS, D. A., SHAHRIARI-ZAVAREH, H., STODDART, J. F., CROSBY, J., ALLWOOD, B. L., SLAWIN, A. M. Z. & WILLIAMS, D. J. (1988). Acta Cryst. C44, 1097-1100.
- PEARS, D. A., SHAHRIARI-ZAVAREH, H., STODDART, J. F., CROSBY, J., Allwood, B. L. & Williams, D. J. (1988*a*). Acta Cryst. C44, 1104–1106.
- PEARS, D. A., SHAHRIARI-ZAVAREH, H., STODDART, J. F., CROSBY, J., ALLWOOD, B. L. & WILLIAMS, D. J. (1988b). Acta Cryst. C44, 1109–1111.
- SHELDRICK, G. M. (1983). SHELXTL, revision 4.0, January 1983. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1988). C44, 1118–1121

A 1:1 Adduct Between the *trans-transoid-trans* Isomer of 2,3,11,12-Tetra-anisyl-18-crown-6 with the (*RRR*)-Configuration and Ammonia-Borane

BY DAVID A. PEARS, HOOSHANG SHAHRIARI-ZAVAREH AND J. FRASER STODDART

Department of Chemistry, The University, Sheffield S3 7HF, England

JOHN CROSBY

Organics Division, Imperial Chemical Industries PLC, Blackley, Manchester M9 3DA, England

AND BILLY L. ALLWOOD AND DAVID J. WILLIAMS

Department of Chemistry, Imperial College, London SW7 2AY, England

(Received 7 September 1987; accepted 17 February 1988)

Abstract. (2R,3R,11R,12R)-2,3,11,12-Tetrakis-4methoxyphenyl-1,4,7,10,13,16-hexaoxacyclooctadecane-ammonia-borane-methanol (4/4/4/3), C₄₀H₄₈- O_{10} , BH₃NH₃, 0.75CH₃OH, $M_r = 744$, triclinic, P1, a = 7.995 (2), b = 11.035 (2), c = 13.371 (4) Å, $\alpha =$ 68.34 (2), $\beta = 74.62$ (2), $\gamma = 82.84$ (2)°, V = 1057 Å³, Z = 1, $D_r = 1.17 \text{ Mg m}^{-3}$, $\lambda(\text{Cu } K\alpha) = 1.54178 \text{ Å}$, μ $= 0.65 \text{ mm}^{-1}$, F(000) = 399.5, room temperature, R = 0.044 for 2765 unique observed reflections with $|F_{o}| > 3\sigma(|F_{o}|)$. One molecule of BH₃NH₃ is hydrogen bonded through its NH₃ group to the nearer triangle of O atoms on one of the two homotopic faces of the title chiral receptor (4). In adopting an all-gauche conformation, the macrocyclic ring carries a pair of vicinal diequatorial anisyl groups and a pair of vicinal diaxial anisyl groups, one syn and the other anti to the bound BH₃NH₃ substrate molecule: the latter anisyl substituent totally obscures the 'free' face of the macrocycle, thus preventing adduct formation with a second BH₃NH₃ molecule.

Introduction. The fact that enantioselective reductions of aromatic ketones can be performed (Allwood,

0108-2701/88/061118-04\$03.00

Shahriari-Zavareh, Stoddart & Williams, 1984) using the ammonia-borane (BH₃NH₃) adducts of the chiral trans-transoid-trans-tetraphenyl-18-crown-6 derivatives (9)* gives added significance to a determination of the solid-state structure of these adducts. In this paper, we (a) describe the preparation of a 1:1 adduct between trans-transoid-trans the isomer (4) of (2R,3R,11R,12R)-tetra-anisyl-18-crown-6, (b) report on the determination of its crystal structure, and (c)compare the structural characteristics of [(4).BH₃NH₃] with those already reported (Allwood et al., 1984) for [(9).BH₃NH₃].

Experimental. Addition of an excess of ammoniaborane to a solution of (+)-(4) in methanol gave a crystalline adduct on removal of the solvent under vacuum. Recrystallization from methanol with *n*hexane as a precipitant afforded single crystals of

© 1988 International Union of Crystallography

^{*}In order to avoid repetition in the presentation of configurational formulae, the reader is referred to Pears, Shahriari-Zavareh, Stoddart, Crosby, Allwood & Williams (1988c; paper VII) and to Fig. 1 of Pears, Shahriari-Zavareh, Stoddart, Crosby, Allwood, Slawin & Williams (1988a; paper I).

[(4).BH₃NH₃] as a methanol solvate that were suitable for X-ray structural analysis. Crystal size: $0.43 \times$ 0.43×0.28 mm. Refined unit-cell parameters obtained from centring 15 reflections. Nicolet R3m diffractometer. 2810 independent reflections ($\theta \le 58^\circ$) measured, Cu $K\alpha$ radiation (graphite monochromator). ω scan. 2765 $[|F_{q}| > 3\sigma(|F_{q}|)]$ considered observed, index range h 0/8, k - 11/11, l - 13/14; two check reflections measured every 50 reflections, net count constant; Lorentz and polarization corrections, no absorption correction. Structure solved by direct methods and ΔE map recycling; a ΔF map revealed the presence of an included molecule of methanol of estimated occupancy 0.75; non-hydrogen atoms refined anisotropically; BH₃, NH₃ and CH₃ groups refined as rigid bodies; positions of H atoms calculated (B-H 1.08, C-H 0.96 Å); H atoms assigned isotropic thermal parameters, $U(H) = 1.2 U_{eq}(X) (X = C, N, B)$, and allowed to ride on parent X atoms. The hydroxy proton on the methanol was not located. An empirical extinction correction was applied (g = 0.0282). Refinement using F magnitudes by block-cascade full-matrix least squares; R = 0.044; $wR = 0.053 [w^{-1} = \sigma^2(F) + \sigma^2(F)]$ $0.0016F^2$; residual electron density in difference map within -0.15 and $0.19 \text{ e} \text{ }^{-3}$; atomic scattering factors and dispersion corrections from International Tables for X-ray Crystallography (1974). Computations carried out on an Eclipse S140 computer using the SHELXTL program system (Sheldrick, 1983).

Discussion. Table 1* lists the fractional atomic coordinates of the non-hydrogen atoms, Table 2 the bond lengths and angles and selected torsion angles.

The structure of $[(4).BH_3NH_3]$ is illustrated in Fig. 1 which includes the atomic numbering scheme. Fig. 2 shows space-filling representations of the 1:1 adduct viewed from opposite sides of the macrocyclic ring.

On 1:1 adduct formation with BH₃NH₃, the conformation of (4) retains its all-gauche geometry but changes from one with local pseudo- C_2 symmetry to another with the typical local pseudo- D_{3d} symmetry (Wipff, Weiner & Kollman, 1982; Wipff, Kollman & Lehn, 1983) that characterizes the vast majority of all 18-crown-6 derivatives when they bind substrates. However, in the case of [(4).BH₂NH₂], there is considerable distortion of the all-gauche conformation of the macrocyclic ring in (4) away from being as highly symmetrical as implied by the D_{3d} point group. This distortion is reflected in the relative dispositions of the six O atoms, which, instead of alternating equally above and below their mean plane, are disposed relative

Table 1. Atom coordinates $(\times 10^4)$ and equivalent isotropic temperature factors ($Å^2 \times 10^3$)

	x	v	z	U*
O(1)	2626 (3)	13276 (2)	1462 (2)	72 (1)
C(2)	4167 (6)	13544 (4)	1641 (4)	90 (2)
C(3)	4149 (6)	12951 (3)	2856 (3)	84 (2)
O(4)	4771 (3)	11632 (2)	3108 (2)	76 (1)
Č(5)	4856 (6)	11036 (3)	4234 (3)	86 (2)
C(6)	5284 (4)	9620 (4)	4492 (3)	79(1)
O(7)	3955 (3)	9031 (2)	4352 (2)	60 (1)
C(8)	3476 (4)	7762 (3)	5114(3)	65 (1)
C(9)	1556 (4)	7662 (3)	5184 (3)	69(1)
0(10)	1393 (3)	7888 (2)	4106 (2)	70(1)
C(II)	-172 (5)	7486 (3)	4031 (3)	84 (2)
$\tilde{C}(12)$	-284(5)	8010 (4)	2860 (4)	88 (2)
0(13)	-493(3)	9384 (2)	2516 (2)	77 (1)
C(14)	-861 (6)	9939 (4)	1455 (4)	96 (2)
C(15)	-972(5)	11393 (4)	1123 (4)	91 (2)
0(16)	690 (3)	11860 (2)	929 (2)	77 (1)
C(17)	885 (4)	13215 (3)	287 (3)	68 (1)
C(18)	2643 (4)	13568 (3)	330 (3)	67 (1)
C(19)	4612 (4)	6698 (3)	4778 (3)	63 (1)
C(20)	5176 (5)	6785 (3)	3696 (3)	74 (1)
C(21)	6215 (5)	5823 (3)	3392 (3)	74 (1)
C(22)	6675 (4)	4726 (3)	4201 (3)	69 (1)
C(23)	6104 (5)	4606 (3)	5284 (3)	78 (1)
C(24)	5072 (5)	5581 (3)	5576 (3)	74 (1)
C(25)	458 (4)	8605 (3)	5697 (3)	71 (1)
C(26)	25 (5)	8311 (3)	6828 (3)	80 (1)
C(27)	-865 (6)	9181 (4)	7320 (3)	90 (2)
C(28)	- 1350 (5)	10399 (4)	6647 (3)	82 (2)
C(29)	-967 (5)	10700 (3)	5515 (3)	83 (2)
C(30)	-68 (5)	9830 (3)	5035 (3)	77 (1)
C(31)	748 (4)	13496 (3)	-882(3)	66 (1)
C(32)	-485 (4)	14384 (3)	-1337(3)	72 (1)
C(33)	-628 (5)	14634 (3)	-2394(3)	75 (1)
C(34)	477 (4)	14008 (3)	-3044(3)	68 (1)
C(35)	1735 (5)	13127 (4)	-2615(3)	79 (1)
C(36)	1823 (5)	12870 (3)	-1540(3)	76 (1)
C(37)	3064 (4)	14974 (3)	-370(3)	67 (1)
C(38)	4519 (5)	15264 (3)	-1280(3)	74 (1)
C(39)	4919 (5)	16536 (4)	-1928 (3)	82 (1)
C(40)	3921 (5)	17553 (3)	-1712 (3)	79 (1)
C(41)	2496 (6)	17294 (4)	-832(3)	89 (2)
C(42)	2087 (5)	16012 (4)	-170(3)	84 (1)
O(43)	7724 (4)	3724 (3)	3973 (2)	91 (1)
C(44)	8693 (7)	3941 (5)	2898 (4)	106 (2)
O(45)	-2251 (4)	11345 (3)	7022 (3)	110(1)
C(46)	-2553 (9)	11133 (6)	8163 (5)	123 (3)
O(47)	256 (4)	14335 (3)	-4090 (2)	87 (1)
C(48)	1364 (7)	13745 (5)	-4795 (4)	104 (2)
O(49)	4445 (4)	18764 (3)	-2420 (3)	103 (1)
C(50)	3489 (8)	19870 (4)	-2221 (5)	122 (3)
N	3271 (3)	10153 (3)	2031 (2)	66 (1)
В	4460 (7)	9852 (6)	1000 (4)	91 (2)
O(51)	7815 (8)	7625 (7)	424 (5)	142 (3)
C(52)	6852 (12)	6945 (8)	160 (7)	123 (4)

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

to each other such that five of them are essentially coplanar (with a maximum standard deviation of 0.03 Å), leaving the sixth one [O(16)] lying 0.6 Å away from this plane directed towards the bound BH₃NH₃ molecule. The anisyl groups are oriented such that one vicinal pair [located at C(8) and C(9)] are pseudo-axial whilst the other vicinal pair [located at C(17) and C(18)] are pseudo-equatorial. The BH₃NH₃ is bound (Figs. 1 and 2a) in a perching mode (Trueblood, Knobler, Lawrence & Stevens, 1982) to one face of the macrocycle: it would appear that steric interactions between the bound substrate and the syn axial anisyl substituent could be responsible for inducing the anti anisyl substituent to obscure (Fig. 2b) the other face of the macrocycle, thus preventing the approach of a second BH₃NH₃ molecule to form a 1:2 adduct as in

^{*} Lists of structure-factor amplitudes, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44790 (20 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

55·4 (4) 81·7 (4)

-79.6 (4) 62.4 (4)

62.3 (5)

Table	2.	Bond	lengths	: (Å),	angles	(°)	and	selected		
torsion angles (°)										
D(1)-C() C(2)-C() C(2)-C() C(6)-O() C(8)-C(9)-O() C(10)-C C(12)-O C(12)-O C(12)-O C(17)-C C(20)-C C(20)-C C(20)-C C(20)-C C(23)-C C(23)-C C(23)-C C(23)-C C(23)-C C(23)-C C(23)-C C(23)-C C(31)-C C(33	2) 5) 7) 10) (11) (13) (17) (13) (17) (21) (21) (22) (24) (23) (24) (32) (32) (33) (35) (32) (35) (42) (44) (48)		401 (6) 507 (6) 420 (5) 398 (5) 528 (5) 408 (5) 414 (4) 404 (4) 406 (6) 427 (4) 507 (5) 380 (5) 380 (5) 358 (5) 380 (5) 359 (4) 389 (5) 379 (6) 379 (6) 379 (6) 379 (6) 379 (6) 379 (5) 369 (5) 371 (6) 373 (5) 369 (5) 369 (5) 369 (5) 369 (5) 369 (5) 369 (5) 371 (6) 373 (5) 374 (6) 574 (6)		$\begin{array}{c} (1)-C(18)\\ (3)-O(4)\\ (5)-C(6)\\ (7)-C(8)\\ (9)-C(25)\\ (11)-C(12)\\ (13)-C(14)\\ (15)-O(16)\\ (17)-C(18)\\ (13)-C(14)\\ (14)-C(14)\\ (14)-C($)))))))))))))))))))	1.424 1.426 1.421 1.486 1.421 1.521 1.518 1.410 1.518 1.410 1.518 1.378 1.381 1.378 1.381 1.378 1.378 1.378 1.374 1.377 1.364 1.377 1.326 1.327 1.326 1.32	$ \begin{array}{c} (4) \\ (4) \\ (5) \\ (3) \\ (4) \\ (5) \\ (7) \\ (5) \\ (5) \\ (5) \\ (5) \\ (6) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (5) \\ (6) \\ (6) \\ (6) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (6) \\ (6) \\ (6) \\ (5) $		
$\begin{array}{c} C(2) - O(\\ C(2) - C(\\ O(4) - C(\\ C(6) - O(\\ O(7) - C(\\ C(8) - C(\\ O(10) - C(\\ C(8) - C(\\ O(10) - C(\\ C(12) - O(\\ C(12) - O(\\ C(12) - O(\\ C(12) - C(\\ C(20) $	$\begin{array}{c} 1) - C \\ 3) - O \\ 5) - C \\ 7) - C \\ 9) - O \\ (11) -$	$\begin{array}{c} (18) \\ (4) \\ (6) \\ (8) \\ (19) \\ (10) \\ C(25) \\ -C(12) \\ -C(14) \\ -O(16) \\ -C(31) \\ C(37) \\ C(20) \\ -C(24) \\ C(20) \\ -C(24) \\ C(26) \\ -C(24) \\ C(26) \\ -C(32) \\ -C(32) \\ -C(32) \\ -C(33) \\ -C(33) \\ -C(33) \\ -C(36) \\ -C(44) \\ -C(44) \\ -C(48) \end{array}$	$\begin{array}{c} 114-6 \ (2)\\ 109-4 \ (4)\\ 110-0 \ (4)\\ 117-9 \ (3)\\ 112-2 \ (2)\\ 107-4 \ (2)\\ 113-1 \ (3)\\ 109-0 \ (3)\\ 112-3 \ (4)\\ 109-3 \ (3)\\ 112-3 \ (4)\\ 112-3 \ (4)\\ 112-3 \ (3)\\ 112-4 \ (2)\\ 112-4 \ (2)\\ 112-4 \ (3)\\ 117-7 \ (3)\\ 121-7 \ (3)\\ 121-7 \ (3)\\ 121-7 \ (3)\\ 117-8 \ (3)\\ 117-8 \ (3)\\ 117-8 \ (3)\\ 119-5 \ (3)\\ 115-4 \ (3)\\ 115-4 \ (3)\\ 118-4 \ (3)\ (3)\ (3)\ (3)\ (3)\ (3)\ (3)\ (3$		$\begin{array}{l} 0(1)-C(2)-\\ (3)-O(4)-\\ (3)-O(4)-\\ (5)-C(6)-\\ (9)-C(8)-\\ (9)-C(8)-\\ (2)-C(1)-\\ (1)-C(12)-\\ (1)-C(12)-\\ (1)-C(13)-\\ (1)-C(13)-\\ (1)-C(18)-\\ (1)-C(18)-\\ (1)-C(19)-\\ (20)-C(25)-\\ (23)-C(22)-\\ (23)-C(22)-\\ (23)-C(23)-\\ (23)-C(23)-\\ (23)-C(33)-\\ (23)-$	C(3) C(3) C(5) O(7) C(9) C(19) C(25) -C(11) -C(15) -C(17) -C(21) -C(21) -C(21) -C(21) -C(21) -C(22) -C(21) -C(22) -C(22) -C(22) -C(22) -C(22) -C(22) -C(23) -C(24) -C(24) -C(25) -C(25) -C(25)		$\begin{array}{c} 110 \cdot 1 (3) \\ 112 \cdot 1 (3) \\ 109 \cdot 0 (3) \\ 060 \cdot 0 (2) \\ 113 \cdot 1 (3) \\ 110 \cdot 6 (3) \\ 115 \cdot 9 (2) \\ 109 \cdot 2 (4) \\ 109 \cdot 2 (4) \\ 109 \cdot 3 (4) \\ 111 \cdot 0 (3) \\ 107 \cdot 7 (2) \\ 112 \cdot 1 (3) \\ 107 \cdot 7 (2) \\ 112 \cdot 1 (3) \\ 121 \cdot 0 (3) \\ 121 \cdot 1 (3) \\ 122 \cdot 7 (3) \\ 119 \cdot 6 (4) \\ 115 \cdot 6 (3) \\ 122 \cdot 7 (3) \\ 119 \cdot 6 (3) \\ 122 \cdot 7 (3) \\ 119 \cdot 6 (3) \\ 121 \cdot 1 (3) \\ 122 \cdot 7 (3) \\ 119 \cdot 6 (3) \\ 121 \cdot 1 (3) \\ 122 \cdot 7 (3) \\ 119 \cdot 6 (3) \\ 122 \cdot 0 (3) \\ 119 \cdot 6 (3) \\ 122 \cdot 2 (3) \\ 122 \cdot 2 (3) \\ 122 \cdot 2 (3) \\ 122 \cdot 0 (3) \\ 119 \cdot 2 (3) \\ 122 \cdot 0 (3) \\ 118 \cdot 0 (4) \\ 118 \cdot 2 (3) \\ \end{array}$		
C(18)-C(0)-C(0)-C(0)-C(0)-C(0)-C(0)-C(0)-C(0	(1)—(2)—C 3)—O 4)—C 5)—C 6)—O 7)—C 8)—C 9)—O	$\begin{array}{c} C(2)-C(3) \\ (3)-O(4) \\ (4)-C(5) \\ (5)-C(6) \\ (6)-O(7) \\ (7)-C(8) \\ (8)-C(9) \\ (9)-O(10) \\ (10)-C(1) \end{array}$)168 86- 177. 172. 62. 142. 150.) 58. 1) 163	4 (3) (1 (4) (5 (4) (5 (3) (7 (4) (1 (3) (8 (3) (1 (3) (0 (3) (0 (3) (0 (1 (3) (0 (1 (1 (1 (1 (1 (1 (1 (1	C(14)-C(15) = C(15) = O(16) = C(17) = C(18) = C(17) = C(18) = C(17)	5)—O(16 5)—C(17 7)—C(18)— -C(18)— -C(9)—C -C(9)— (1)—C(18 7)—C(18	6)C(17 7)C(18 8)O(1) -C(17) C(25) -O(10) -C(25) 8)C(37 8)C(37	 161-4 (3) 171-1 (3) -58-8 (3) 179-7 (3) -65-8 (3) -65-2 (3) 170-9 (2) 177-1 (3) 179-5 (3) 		

Shahriari-Zavareh, Stoddart, Crosby, Allwood, Slawin & Williams, 1988b; paper VI) isomers of 2,3,11,-12-tetra-anisyl-18-crown-6. The situation is reminiscent of the solid-state structures already noted for the 1:1 adducts formed between (a) trans-transoid-trans-2,3,11,12-tetraphenyl-18-crown-6 (8) and BH₃NH₃ (Allwood et al., 1984) and (b) cis-cisoid-cis-2,3,-11,12-tetra-anisyl-18-crown-6 (1) and BH₃NH₃ (Pears, Shahriari-Zavareh, Stoddart, Crosby, Allwood & Williams, 1988a; paper II). Thus, it might be concluded that, in the absence of pseudo-axial substituents obscuring one of the faces of a 2,3,11,12-tetra-aryl-18-crown-6 derivative, these macrocyclic receptors

Fig. 1. Ball-and-stick representation of the structure of [(4).BH₃-NH₃] showing the atomic numbering scheme. The 18-crown-6 ring is highlighted with solid C-C and C-O bonds.

the case of the cis-transoid-cis (2) (Pears, Shahriari-Zavareh, Stoddart, Crosby, Allwood & Williams, 1988b; paper IV) and trans-cisoid-trans (3) (Pears,

169-3 (3)

68.6 (4)

C(9) - O(10) - C(11) - C(12)

O(13)-C(14)-C(15)-O(16)

O(10)-C(11)-C(12)-O(13) -67-6 (4) C(11)-C(12)-O(13)-C(14) -171-5 (3) C(12)-O(13)-C(14)-C(15) -177-1 (3)

 $\begin{array}{c} C(3)-C(1)-C(18)-C(37)\\ C(3)-C(17)-C(18)-C(37)\\ C(9)-C(8)-C(19)-C(20)\\ C(8)-C(9)-C(25)-C(26)\\ C(18)-C(17)-C(31)-C(36)\\ C(17)-C(18)-C(37)-C(42) \end{array}$

Fig. 2. Space-filling representations of [(4).BH₁NH₁] looking down on (a) the face of the macrocycle to which BH_3NH_3 is bound and (b) the 'free' face of the macrocycle which is obscured by an axial anisyl substituent.

prefer to bind two neutral BH₃NH₃ substrates simultaneously to their opposite faces.

The NH₃ and BH₃ groups in the substrate are staggered with respect to each other, the smallest H-N-B-H torsion angle being 54°. The NH₃ group in BH₃NH₃ is hydrogen bonded to O(4), O(10) and O(16) with N···O distances of 3.05(1), 3.13(1) and 2.93 (1) Å, respectively. Significantly, it is the outof-plane O atom [O(16)] which is involved in the shortest hydrogen-bond contact. Whilst the $N-H\cdots O$ angles at H(b), H(c) and H(a) are all the same (165°), the angles between the COC planes and their HO vectors are 33, 19 and 11°, respectively. The N···O distances to the oxygen atoms on the opposite face, O(1), O(7) and O(13), are 3.25(1), 3.01(1) and 3.01 (1) Å, respectively. The N atom is displaced 1.27 (1) Å from the best mean plane of the six O atoms in the macrocycle and the B-N bond is inclined at 11.1° to the normal to this plane. These values compare closely with those of 1.24 Å and 13° already reported (Allwood et al., 1984) for trans-transoidtrans-tetraphenyl-18-crown-6 (8). The similarity of the solid-state structures of these two 1:1 adducts is reassuring when one considers the potential roles (Stoddart, 1984, 1987a,b,c; Colquhoun, Stoddart & Williams, 1986) of (4) and (8) as chiral auxiliaries and catalysts.

There is one short intermolecular contact, namely of 3.37(1) Å, between O(1) and C(44) in symmetryrelated adducts. Not surprisingly, it involves a methoxy carbon atom of an anisyl substituent. There are no other contacts of less than normal van der Waals distances between symmetry-related adducts.

The crystal structures reported in this series of eight papers give considerable insight into the effect of changing the relative configurations of four substituents in a receptor molecule upon the noncovalent interactions involving one substrate (BH₃NH₃) and one receptor constitution (2,3,11,12-tetra-anisyl-18-crown-6). Together with the crystal structures also available for some of the diastereoisomers of 2,3,11,12-tetraphenyl-18-crown-6 (Weber, Sheldrick, Burgemeister, Dietl, Mannschreck & Merz, 1984; Blasius, Rausch, Andreetti & Rebizant, 1984) and their adducts with BH₃NH₃ (Allwood et al., 1984), these data will provide a focal point for reference when we discuss (Allwood, Crosby, Koppenhöffer, Pears, Shahriari-Zavareh, Slawin, Stoddart & Williams, 1988) the physical and chemical properties of these receptors and their BH₃NH₃ adducts in solution.

We thank the Science and Engineering Research Council and Imperial Chemical Industries PLC for financial support. One of us (JFS) is grateful to the Leverhulme Trust for the award of a Research Fellowship which helped to support the writing of this series of papers.

References

- Allwood, B. L., Crosby, J. Koppenhöffer, B., Pears, D. A., Shahriari-Zavareh, H., Slawin, A. M. Z., Stoddart, J. F. & Williams, D. J. (1988). In preparation.
- ALLWOOD, B. L., SHAHRIARI-ZAVAREH, H., STODDART, J. F. & WILLIAMS, D. J. (1984). J. Chem. Soc. Chem. Commun. pp. 1461-1464.
- BLASIUS, E., RAUSCH, R. A., ANDREETTI, G. D. & REBIZANT, J. (1984). Chem. Ber. 117, 1113–1127.
- Colquhoun, H. M., Stoddart, J. F. & Williams, D. J. (1986). New Sci. 1 May 1986, No. 1506, pp. 44–48.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham. Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- PEARS, D. A., SHAHRIARI-ZAVAREH, H., STODDART, J. F., CROSBY, J., ALLWOOD, B. L., SLAWIN, A. M. Z. & WILLIAMS, D. J. (1988a). Acta Cryst. C44, 1097-1100.
- PEARS, D. A., SHAHRIARI-ZAVAREH, H., STODDART, J. F., CROSBY, J., ALLWOOD, B. L., SLAWIN, A. M. Z. & WILLIAMS, D. J. (1988b). Acta Cryst. C44, 1112–1115.
- PEARS, D. A., SHAHRIARI-ZAVAREH, H., STODDART, J. F., CROSBY, J., ALLWOOD, B. L. & WILLIAMS, D. J. (1988a). Acta Cryst. C44, 1101–1104.
- PEARS, D. A., SHAHRIARI-ZAVAREH, H., STODDART, J. F., CROSBY, J., ALLWOOD, B. L. & WILLIAMS, D. J. (1988b). Acta Cryst. C44, 1106–1109.
- PEARS, D. A., SHAHRIARI-ZAVAREH, H., STODDART, J. F., CROSBY, J., ALLWOOD, B. L. & WILLIAMS, D. J. (1988c). Acta Cryst. C44, 1115–1118.
- SHELDRICK, G. M. (1983). SHELXTL, revision 4.0, January 1983. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.
- STODDART, J. F. (1984). The Chemistry of Enzyme Action, edited by M. I. PAGE, pp. 529-561. Amsterdam: Elsevier.
- STODDART, J. F. (1987a). Topics in Stereochemistry, Vol. 17, edited by E. L. ELIEL & S. H. WILEN, pp. 207–288. New York: John Wiley.
- STODDART, J. F. (1987b). Enzyme Mechanisms, edited by M. I. PAGE & A. WILLIAMS. Spec. Publ. London: Royal Society of Chemistry.
- STODDART, J. F. (1987c). Biochem. Soc. Trans. In the press.
- TRUEBLOOD, K. N., KNOBLER, C. B., LAWRENCE, D. S. STEVENS, R. V. (1982). J. Am. Chem. Soc. 104, 1355–1362.
- WEBER, G., SHELDRICK, G. M., BURGEMEISTER, TH., DIETL, F., MANNSCHRECK, A. & MERZ, A. (1984). Tetrahedron, 40, 855-863.
- WIPFF, G., KOLLMAN, P. A. & LEHN, J. M. (1983). J. Mol. Struct. 93, 153-165.
- WIPFF, G., WEINER, P. & KOLLMAN, P. (1982). J. Am. Chem. Soc. 105, 3249-3258.